I now prove the expected algebraic properties of ++ and \cdot. By the end of all the proofs, one will have characterized the natural numbers as a special algebraic object called a semiring.

Theorem AssocAdd

Associativity of Addition: For all x,y,zNx,y,z\in\mathbb{N}, (x+y)+z=x+(y+z)(x+y)+z=x+(y+z).

Proof: As usual, let Σ={zN: x,yN [(x+y)+z=x+(y+z)]}\Sigma=\{z\in\mathbb{N}:\ \forall x,y\in\mathbb{N}\ [(x+y)+z=x+(y+z)]\}.

  1. 0Σ0\in\Sigma because (x+y)+0=x+y=x+(y+0)(x+y)+0=x+y=x+(y+0) by the definition of addition applied to x+yx+y for the first equality and to yy for the second equality.
  2. Suppose, now, that zΣz\in\Sigma. Then, for any x,yNx,y\in\mathbb{N}: x+(y+S(z))=x+S(y+z) by the definition of addition=S(x+(y+z)) by the definition of addition=S((x+y)+z) since zΣ=(x+y)+S(z) by the definition of addition \begin{aligned} x+(y+S(z)) &= x+S(y+z) \ \text{by the definition of addition}\\ &= S(x+(y+z)) \ \text{by the definition of addition}\\ &= S((x+y)+z) \ \text{since }z\in\Sigma\\ &= (x+y)+S(z) \ \text{by the definition of addition} \end{aligned}

This completes the induction and shows that NΣ\mathbb{N}\subseteq\Sigma, so that any natural number must satisfy the set condition of Σ\Sigma, which is the lemma itself.

Reminder on a Property of Addition

Before one shows the next lemma, I would like to remind the reader of an easy property that I showed when I defined addition: x+S(0)=S(x)x+S(0)=S(x).

Theorem CommutAdd

Commutativity of Addition: For all x,yNx,y\in\mathbb{N}, x+y=y+xx+y=y+x.

Proof: As always, let Σ={yN: xN [x+y=y+x]}\Sigma=\{y\in\mathbb{N}:\ \forall x\in\mathbb{N}\ [x+y=y+x]\}.

  1. One needs to show that 0Σ0\in\Sigma i.e. for all xNx\in\mathbb{N}, x+0=0+xx+0=0+x This, itself, requires a mini-induction on xx!
    • Well, if x=0x=0, then x+0=0+0=0+xx+0=0+0=0+x.
    • Now, assume that the claim holds for xx. Then, 0+S(x)=S(0+x)0+S(x)=S(0+x) by the definition of addition. But, as xx satisfies the claim, S(0+x)=S(x+0)S(0+x)=S(x+0). Next, S(x+0)=S(x)S(x+0)=S(x) by a property of addition shown earlier. Finally, the definition of addition also gives S(x)=S(x)+0S(x)=S(x)+0.
  2. Now, suppose yΣy\in\Sigma. Then, for any xNx\in\mathbb{N}: x+S(y)=S(x+y) by the definition of addition=S(y+x) since yΣ=(y+x)+S(0) by a property of addition shown earlier=y+(x+S(0)) by 1 \begin{aligned} x+S(y) &= S(x+y) \ \text{by the definition of addition}\\ &= S(y+x) \ \text{since }y\in\Sigma\\ &= (y+x)+S(0) \ \text{by a property of addition shown earlier}\\ &= y+(x+S(0)) \ \text{by 1}\\ \end{aligned} At this point, one is stuck. One needs the fact that x+S(0)=S(0)+xx+S(0)=S(0)+x to push the argument through. Because if that were true, y+(x+S(0))=y+(S(0)+x) by the property yet to be proven=(y+S(0))+x by associativity=S(y)+x by a property of addition shown earlier \begin{aligned} y+(x+S(0)) &= y+(S(0)+x) \ \text{by the property yet to be proven}\\ &= (y+S(0))+x \ \text{by associativity}\\ &= S(y)+x \ \text{by a property of addition shown earlier} \end{aligned} So then, how does one show that x+S(0)=S(0)+xx+S(0)=S(0)+x? By induction on xx of course!
    • If x=0x=0, x+S(0)=S(x)=S(0)=S(0)+0=S(0)+xx+S(0)=S(x)=S(0)=S(0)+0=S(0)+x. The reader can fill in the relevant details.
    • Now, assume that the claim is true for xx. Then S(x)+S(0)=S(S(x)) by a property of addition shown earlier=S(x+S(0)) by the same property used on x=S(S(0)+x) as x satisfies the claim=S(0)+S(x) by the definition of addition \begin{aligned} S(x)+S(0) &= S(S(x)) \ \text{by a property of addition shown earlier}\\ &= S(x+S(0)) \ \text{by the same property used on }x\\ &= S(S(0)+x) \ \text{as }x\text{ satisfies the claim}\\ &= S(0)+S(x) \ \text{by the definition of addition} \end{aligned}

Theorem IdAdd

Identity of Addition: For all xNx\in\mathbb{N}, x+0=0+x=xx+0=0+x=x.

Proof: Obviously x+0=xx+0=x by the definition of addition itself. At the same time, by commutativity, 0+x=x+0=x0+x=x+0=x.

Theorem CancAdd

Addition is Cancellative: For all x,y,zNx,y,z\in\mathbb{N}, if x+z=y+zx+z=y+z, then x=yx=y.

Proof: Note that by the definition of addition, the lemma is certainly true for z=0z=0. In fact, the lemma is also true for z=S(0)z=S(0): if x+S(0)=y+S(0)x+S(0)=y+S(0), then S(x)=x+S(0)=y+S(0)=S(y)S(x)=x+S(0)=y+S(0)=S(y) (I am using a property of addition shown earlier). Then, by Peano axiom 2, x=yx=y. Thus, to prove the lemma with induction, one simply needs to assume that it holds for some zNz\in\mathbb{N} and then show that it holds for S(z)S(z). So suppose it holds for zz and suppose x+S(z)=y+S(z)x+S(z)=y+S(z). Then, (x+z)+S(0)=x+(z+S(0)) by associativity=x+S(z) by a property of addition shown earlier=y+S(z) by hypothesis=y+(z+S(0)) by a property of addition shown earlier=(y+z)+S(0) by associativity \begin{aligned} (x+z)+S(0) &= x+(z+S(0)) \ \text{by associativity}\\ &= x+S(z) \ \text{by a property of addition shown earlier}\\ &= y+S(z) \ \text{by hypothesis}\\ &= y+(z+S(0)) \ \text{by a property of addition shown earlier}\\ &= (y+z)+S(0) \ \text{by associativity} \end{aligned} Now, since the lemma is true for S(0)S(0), x+y=y+zx+y=y+z. But the lemma is also true for zz; so, x=yx=y.

Note that because of commutativity, one can also cancel from the left i.e. if z+x=z+yz+x=z+y, then x=yx=y.

 

So far, I have shown that the addition function on N\mathbb{N} is associative, commutative and cancellative. It also has an identity. What this means is that N\mathbb{N} is a cancellative, commutative monoid under ++. I now turn to multiplication:

Theorem AssocMultiply

Associativity of Multiplication: For all x,y,zNx,y,z\in\mathbb{N}, (xy)z=x(yz)(x \cdot y) \cdot z=x \cdot (y \cdot z).

Proof: As usual, let Σ={zN: x,yN [(xy)z=x(yz)]}\Sigma=\{z\in\mathbb{N}:\ \forall x,y\in\mathbb{N}\ [(x \cdot y) \cdot z=x \cdot (y \cdot z)]\}.

  1. 0Σ0\in\Sigma because (xy)0=0=x0=x(y0)(x \cdot y) \cdot 0=0=x \cdot 0=x \cdot (y \cdot 0) by the definition of multiplication.
  2. Suppose, now, that zΣz\in\Sigma. Then, for any x,yNx,y\in\mathbb{N}: x(yS(z))=x(yz+y) by the definition of multiplication=x(yz)+xy by the same definition=(xy)z+xy since zΣ=(xy)S(z) by the definition of multiplication \begin{aligned} x \cdot (y \cdot S(z)) &= x \cdot (y \cdot z + y) \ \text{by the definition of multiplication}\\ &= x \cdot (y \cdot z) + x \cdot y \ \text{by the same definition}\\ &= (x \cdot y) \cdot z + x \cdot y \ \text{since }z\in\Sigma\\ &= (x \cdot y) \cdot S(z) \ \text{by the definition of multiplication} \end{aligned}

Theorem RDistMultiplyAdd

Right Distributivity of Multiplication over Addition: For all x,y,zNx,y,z\in\mathbb{N}, (x+y)z=xz+yz(x+y) \cdot z=x \cdot z + y \cdot z.

Proof: Let Σ={zN: x,yN [(x+y)z=xz+yz]}\Sigma=\{z\in\mathbb{N}:\ \forall x,y\in\mathbb{N}\ [(x+y) \cdot z=x \cdot z + y \cdot z]\}.

  1. 0Σ0\in\Sigma as (x+y)0=0=0+0=x0+y0=xz+yz(x+y) \cdot 0=0=0+0=x \cdot 0 + y \cdot 0=x \cdot z + y \cdot z.
  2. Consider some zΣz\in\Sigma. Then (x+y)S(z)=(x+y)z+(x+y)(x+y) \cdot S(z)=(x+y) \cdot z + (x+y) (x+y)S(z)=(x+y)z+(x+y) by the definition of multiplication=(xz+yz)+(x+y) since zΣ=(xz+x)+(yz+y) by associativity and commutativity of addition=xS(z)+yS(z) by the definition of multiplication \begin{aligned} (x+y) \cdot S(z) &= (x+y) \cdot z + (x+y) \ \text{by the definition of multiplication}\\ &= (x \cdot z + y \cdot z)+(x+y) \ \text{since }z\in\Sigma\\ &= (x \cdot z + x)+(y \cdot z + y) \ \text{by associativity and commutativity of addition}\\ &= x \cdot S(z) + y \cdot S(z) \ \text{by the definition of multiplication} \end{aligned}

Theorem CommutMultiply

Commutativity of Multiplication: For all x,yNx,y\in\mathbb{N}, xy=yxx \cdot y=y \cdot x.

Proof: As always, let Σ={yN: xN [xy=yx]}\Sigma=\{y\in\mathbb{N}:\ \forall x\in\mathbb{N}\ [x \cdot y=y \cdot x]\}.

  1. One needs to show that 0Σ0\in\Sigma i.e. for all xNx\in\mathbb{N}, x0=0xx \cdot 0=0 \cdot x. So do induction on xx
    • Well, if x=0x=0, x0=00=0=00=0xx \cdot 0=0 \cdot 0=0=0 \cdot 0=0 \cdot x.
    • Now, say the claim holds for xx. Then, 0S(x)=0x+0=0x=x0=0=S(x)00 \cdot S(x)=0 \cdot x + 0=0 \cdot x=x \cdot 0=0=S(x) \cdot 0. The reader can fill in the details as needed.
  2. Now, suppose yΣy\in\Sigma. Then, for any xNx\in\mathbb{N}: xS(y)=xy+x by the definition of multiplication=yx+x since yΣ=yx+(0+x) zero is the additive identity=yx+(x0+x) by the definition of multiplication=yx+xS(0) by the definition of multiplication \begin{aligned} x \cdot S(y) &= x \cdot y + x \ \text{by the definition of multiplication}\\ &= y \cdot x + x \ \text{since }y\in\Sigma\\ &= y \cdot x + (0 + x) \ \text{zero is the additive identity}\\ &= y \cdot x + (x \cdot 0 + x) \ \text{by the definition of multiplication}\\ &= y \cdot x + x \cdot S(0) \ \text{by the definition of multiplication}\\ \end{aligned} Just as with addition, one is now stuck. One needs the fact that xS(0)=S(0)xx \cdot S(0)=S(0) \cdot x to push the argument through. Because if that were true, yx+xS(0)=yx+S(0)x by the property yet to be proven=(y+S(0))x by right distributivity=S(y)x by a property of addition shown earlier \begin{aligned} y \cdot x + x \cdot S(0) &= y \cdot x + S(0) \cdot x \ \text{by the property yet to be proven}\\ &= (y+S(0)) \cdot x \ \text{by right distributivity}\\ &= S(y) \cdot x \ \text{by a property of addition shown earlier} \end{aligned} So, just like before, one does induction on xx:
    • If x=0x=0, xS(0)=x0+x=0+0=0=S(0)0=S(0)xx \cdot S(0)=x \cdot 0 + x=0+0=0=S(0) \cdot 0=S(0) \cdot x. The reader can fill in the relevant details.
    • Now, assume that the claim is true for xx. Then S(x)S(0)=(x+S(0))S(0) by a property of addition shown earlier=xS(0)+S(0)S(0) by right distributivity=S(0)x+S(0)S(0) as x satisfies the claim=S(0)x+(S(0)0+S(0)) by the definition of multiplication=S(0)x+(0+S(0)) by the definition of multiplication=S(0)x+S(0) zero is the additive identity=S(0)S(x) by the definition of multiplication \begin{aligned} S(x) \cdot S(0) &= (x+S(0)) \cdot S(0) \ \text{by a property of addition shown earlier}\\ &= x \cdot S(0) + S(0) \cdot S(0) \ \text{by right distributivity}\\ &= S(0) \cdot x + S(0) \cdot S(0) \ \text{as }x\text{ satisfies the claim}\\ &= S(0) \cdot x + (S(0) \cdot 0 + S(0)) \ \text{by the definition of multiplication}\\ &= S(0) \cdot x + (0 + S(0)) \ \text{by the definition of multiplication}\\ &= S(0) \cdot x + S(0) \ \text{zero is the additive identity}\\ &= S(0) \cdot S(x) \ \text{by the definition of multiplication} \end{aligned}

Theorem IdMultiply

Identity of Multiplication: For all xNx\in\mathbb{N}, x1=1x=xx \cdot 1=1 \cdot x=x where 1=S(0)1=S(0).

Proof: Note that x1=xS(0)=x0+x=0+x=xx \cdot 1=x \cdot S(0)=x \cdot 0 + x = 0+x=x. The reader can fill in the relevant details for manipulations involving ++. For the manipulations involving \cdot, note the definition of multiplication and some associated properties shown earlier. At the same time, by commutativity, 1x=x1=x1 \cdot x=x \cdot 1=x.

Theorem LDistMultiplyAdd

Left Distributivity of Multiplication over Addition: For all x,y,zNx,y,z\in\mathbb{N}, z(x+y)=zx+zyz \cdot (x+y)=z \cdot x + z \cdot y.

Proof Sketch: Simply apply commutativity of \cdot to right distributivity.

Theorem ZAnnMultiply

Zero Annihilates by Multiplication: For all xNx\in\mathbb{N}, x0=0x=0x \cdot 0=0 \cdot x=0.

Proof Sketch: x0=0x \cdot 0=0 by definition; applying commutativity to this yields the other equality.

Theorem NoZDivs

N\mathbb{N} has No Zero Divisors: For all x,yNx,y\in\mathbb{N}, if xy=0x \cdot y = 0, then x=0x=0 or y=0y=0.

Proof: Suppose, for the sake of proving the contrapositive, that neither xNx\in\mathbb{N} nor yNy\in\mathbb{N} is 00. Then, by Lemma ExPre, there are x,yNx',y'\in\mathbb{N} such that S(x)=xS(x')=x and S(y)=yS(y')=y. Then, xy=S(x)S(y)=S(x)y+S(x)=S(S(x)y+x) x \cdot y=S(x') \cdot S(y')=S(x') \cdot y'+S(x')=S(S(x') \cdot y'+x') by the definitions of addition and multiplication alone. But then, by Peano axiom 3, S(S(x)y+x)S(S(x') \cdot y'+x') cannot be 00.

Theorem CancMultiply

Multiplication is Cancellative: For all x,y,zNx,y,z\in\mathbb{N}, if z0z \neq 0 and zx=zxz \cdot x=z \cdot x, then x=yx=y.

Proof: Let Σ={xN: y,zN [if z0 and zx=zy, then x=y]}\Sigma=\{x\in\mathbb{N}:\ \forall y,z\in\mathbb{N}\ [\text{if}\ z \neq 0\ \text{and}\ z \cdot x=z \cdot y\text{, then}\ x=y]\}.

  1. To show 0Σ0\in\Sigma, suppose that z0z \neq 0 and z0=0=zyz \cdot 0=0=z \cdot y. But then by the previous lemma, yy must be 00.
  2. Now, assume that xΣx\in\Sigma. To show S(x)ΣS(x)\in\Sigma also, assume the hypothesis of the lemma i.e. suppose that z0z \neq 0 and that zS(x)=zx+z=zy z \cdot S(x)=z \cdot x + z=z \cdot y Now, by Peano axiom 3, S(x)0S(x) \neq 0. Since also, z0z \neq 0 by hypothesis, one has that y0y \neq 0; for otherwise, zS(x)=zy=z0=0z \cdot S(x)=z \cdot y=z \cdot 0=0, contradicting the previous lemma. Hence, by Lemma ExPre, there is a yNy'\in\mathbb{N} such that S(y)=yS(y')=y. So, zx+z=zy=zS(y)=zy+z z \cdot x + z=z \cdot y=z \cdot S(y')=z \cdot y' + z Now, by additive cancellation, zx=zyz \cdot x=z \cdot y'. But as xΣx\in\Sigma and z0z \neq 0, this means that x=yx=y', so that S(x)=S(y)=yS(x)=S(y')=y by Peano axiom 2. This concludes the induction.

Note that because of commutativity, one can also cancel from the right i.e. if xz=yzx \cdot z=y \cdot z, then x=yx=y.

Remarks

This concludes the basic exploration of the algebraic structure of N\mathbb{N}. All of these properties imply that N\mathbb{N} is a commutative, cancellative semiring that is also multiplicatively cancellative for non-zero values.

results matching ""

    No results matching ""